

IP Protection - a Seed Company Perspective 知识产权保护 – 公司视角

Diego Diz Monsanto Company 孟山都公司

International Symposium on Seed Intellectual Property Rights

& 5th National Forum on Agricultural Intellectual Property
Rights
Feb 14-15, 2012.
Beijing, China

Outline 报告内容

- Intellectual Property and Genetic Gain 知识产权和遗传增益
- IP Protection practices 知识产权保护实践
 - Training (internal/external collaboration) 培训 (内/外合作)
 - Operating procedures 运行流程
 - Physical protection 实物保护
 - Legal protection 法律保护
- Germplasm infringement detection 种质侵权检测
- Conclusions-Discussion 总结-讨论

IP protection and Genetic Gain:

Global Yield Increase for several Key Crops 知识产权和遗传增益:全球几种主要作物的产量增长

Significant decrease in Wheat gains during last 20 years. 过去20年小麦收益的显著下降

Corn Yield Increase by Country

Yield increase impacted by multiple factors, but strong IP protection enhances investment in Genetic Gain. 多个方面影响产量增长,但IP保护促进遗传增益投资

Strong Intellectual Property Protection is linked to Investment in Crop Improvement 强大的知识产权保护与作物改良投资密切相关

- Plant breeding and innovation is expensive 植物育种和创新投入昂贵
- Return on investment is relatively long-term: 6-12 years for unique breakthroughs
 投资回报时间长:独特的技术突破需6-12年
- Technically Advanced breeding investment needs to be sustained by: 技术创新型育种投资需要两方面支持:
 - Improved Intellectual Property Protection 改善知识产权保护
 - Appreciation by the seed industry of the value created by new varieties and technology 种业对新品种和技术创造价值的认可

Protection is needed for the Variety and other R&D innovations 品种和研发创新需要获得保护

IP Protection practices - Training 知识产权保护实践 - 培训

Internal Training for Employees 内部员工培训

- Confidentiality of IP and Trade Secrets
 知识产权和商业机密保密工作
- Rules of engagement/communication Internal and external 制定内/外沟通的规定

External collaboration 对外合作

 Communicate the value of IP for a growing seed industry and for stronger private-public collaboration (clearly defined ownership is critical for collaboration)

强调知识产权对于成长的种业和强有力的公-私机构合作的价值 (明确定义的所有权是合作中关键所在)

Support best practice development in the industry.
 支持行业中良好规范的建立和发展

IP Protection practices -

Operating Procedures (examples) 知识产权保护实践 – 运行流程(实例)

Global Germplasm movement restrictions

全球种质资源流动限制

Company restrictions linked to 公司限制与下列情况有关:

IP protection systems and common practices in each country.

各国的IP保护体系和常见做法

- Import sampling and safeguard systems.
 进口样品和维护系统
- Country claims on plant genetic resources imported 国家对进口植物遗传资源的权属声明
- Government -imposed restrictions across countries.
- 政府: 施加国家之间的限制

IP Protection practices -

Operating Procedures (examples) 知识产权保护实践 – 运行流程(实例)

 Tracking of seed movement: A large global organization moves millions of seed packets every year.

监测种子流动:大型全球组织每年有几百万袋种子在各地流动

Data protection: Database and IT tool management.

数据保护: 数据库和IT工具管理

- - for development of internal genetic library 利于内部遗传库的扩充
 - Infringement-tracking capabilities. 建立对侵权行为进行监测的能力

IP Protection practices

The case of Germplasm Movement 知识产权保护实践 – 以种质流动为例

Movement can be restricted in two ways:

种质移动在下面两个方面受限:

Self-imposed by the company, due to weak IP protection systems and risk

公司自己施加的限制:源自IP保护薄弱和风险考虑

 Regulatory framework, due to restrictive importexport regulations.

法规框架,源自苛刻的进出口法规

Both mechanisms are strongly detrimental to the rate of crop genetic gain within a given country.

这两种机制都非常不利于一个国家的作物遗传增益

IP Protection practice - Physical protection 知识产权保护实践 - 实物保护

 Physical protection of germplasm assets – nurseries and germplasm banks

种质财产的实物保护 - 苗圃和种质资源库

• Stronger IP respect significantly reduces the need for physical protection加强对知识产权的尊重显着降低实物保护的必要性

Brazil 巴西

Mexico 墨西哥

IP Protection Practice - Legal Protection 知识产权保护实践 - 法律保护

An Effective Legal system 高效的法律体系:

- Predictability and Certainty of obtaining and protecting IP rights. IP权利获得和保护具有可预见性和确定性
- Elements which <u>prevent or discourage infringement</u> are indispensible (PVP, principle of ED, safeguards of seed deposits for IP) 防止或阻止侵权行为的要素不可或缺
- Legal infrastructure is needed for <u>enforcement</u> in cases where IP rights are not respected
 - 在IP权利不受尊重的情况下,需要建立法律基础体系,推进执法
- <u>Collaboration</u> is encouraged by clearly defined ownership of IP rights among public and private sectors. 公-私组织的合作需要明确定义IP所有权

IP Protection for Plant-Based Innovation 源自创新的植物知识产权保护

- Plant Variety Protection 植物品种保护
- Utility Patents 发明专利
- Plant Patents 植物专利
- Trade Secrets 商业机密
- Contract Provisions 合同条款

Germplasm Infringement Detection 种质侵权检测

- Hybrid crops 杂交作物,
 - Common misconception: Misuse detection options are limited when considering hybrids.

常见的误解:对于杂交品种,检测手段的误用是有限的

Most common types of germplasm misuse:

最常见的几种种质误用:

- <u>Direct use:</u> misappropriated inbred parent is used to produce a hybrid,
 <u>直接使用</u>: 使用不恰当的自交系亲本生产杂交品种
- Predominant derivation: slightly different 'copy' of parental line is developed and used in hybrid combination,
 主要派生(衍生)品系: 杂交中使用了近似的亲本
- Derivation from illegally accessed source; parental line is illegally accessed to start new breeding population, resulting in a new inbred progeny.

<u>派生(衍生)品系来自非法获取的资源</u>:使用非法获得的亲本培育新品种,从而获得一个新的自交系后代

Examples of misuse of germplasm in hybrid crops

杂交作物中误用种质的例子

1. Detection of Direct use or Predominant derivation:

Hybrid fingerprint is tested for parentage relationship with proprietary inbreds.

直接使用或主要派生(衍生)品系的检测:测定杂交指纹确定专有自交系亲子关系

- <u>Test parentage hypothesis</u>. By using thousands of SNP markers, it is possible to establish parentage relationship with high probability (Infinium 50 K SNP markers chip is publically available)
- Algorithms are needed to screen large number of potential permutations (Multiple hybrids by multiple proprietary inbreds, at thousands of marker loci)

Use of haplotype sequences as a proof of derivation

使用单倍体序列证明派生(衍生)品系

DNA recombination «Cross-overs» occur during derivation-breeding.

These « Line Specific Recombination » (LSR) events provide unique haplotypes that can be identified with confidence when comparing high-density fingerprinting profiles.

If A1 is illegally accessed & used for breeding purpose

A1 is crossed with D1 to develop a segregating pop. For breeding purpose.

New cross-overs occur during breeding process...

After derivation, a subset of the LSR-haplotypes from parent A1 will remain in new progeny B3. Even if B3 has low Sim% with A1, derivation act could be confirmed by looking at presence of LSR haplotypes.

Germplasm Infringement Detection Summary 种质侵权检测总结

- Misuse detection can be very efficient.
 误用检测可以非常有效
- The added complexity in hybrid crops is now manageable through advancement in Information Technology and molecular/sequencing techniques (cost, accuracy, throughput, number of markers).

对于杂交作物,增加的复杂性是信息技术和分子/序列技术的进步 (成本,精确性,处理量,分子标记数)

High-density fingerprinting and Line-Specific-Recombination
 Haplotypes are powerful tools to detect suspected derivation from inbred lines.

高密度指纹和线性特异重组三倍体是检测来自自交系的可疑派生(衍生)品系的强大工具

• Fingerprinting information, coupled with algorithm-based data mining, offers solid capability to accurately detect use of hybrid parents. 指纹识别信息,结合数据挖掘算法,完全能够精确检测杂交亲本

Conclusions 总结

 Strong Intellectual Property protection is linked to increased investment, innovation and genetic gain.

强大的IP保护促进投资、创新和遗传增益

 IP protection in Seed Companies include multiple procedures: Training; Operating Procedures, Physical protection and Legal Protection.

种子公司的IP保护包括多种方法:培训;制定运行流程;实物保护和 法律保护

 Germplasm movement restrictions, whether selfimposed due to IP risks or due to restrictive legislation, reduce genetic gain.

种质流动限制减少遗传增益

 Advanced marker/IT technology is very effective in tracking misuse of germplasm.

先进的标记技术和IT技术可以有效监测种质误用

Thank you 谢谢